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Abstract. A Riemannian geometrization of dynamics is used to study chaoticity in the classical
Hamiltonian dynamics of aU(1) lattice gauge theory. This approach allows one to obtain analytical
estimates of the largest Lyapunov exponent in terms of time averages of geometric quantities. These
estimates are compared with the results of numerical simulations, and turn out to be very close to
the values extrapolated for very large lattice sizes even when the geometric quantities are computed
using small lattices. The scaling of the Lyapunov exponentλ with the energy densityε is found to
be well described by the lawλ ∝ ε2.

1. Introduction

Classical dynamical aspects of lattice gauge theories have recently attracted some interest [1,2].
The classical limit of a lattice gauge theory is interesting from the point of view of both classical
dynamical system theory and in the perspective of its quantum counterpart. As far as the latter
aspect is concerned, the interest resides mainly in the fact that very few non-perturbative
tools are available to study quantum gauge field theories, while in the classical limit it is, in
principle, possible to exactly simulate the real time evolution of the system at any energy.
From the point of view of the theory of classical dynamical systems, lattice gauge theories
are highly nontrivial many-degrees-of-freedom Hamiltonian systems which exhibit a rich and
interesting phenomenology. The classical Hamiltonian dynamics of such systems is known to
be chaotic [1]; however, a precise characterization of the different chaotic regimes which may
occur in these systems is still lacking.

Many particular aspects of this general problem have been considered in the literature,
concerning the properties of pure gauge theories and of theories coupled with matter (mainly
Higgs fields), e.g., the systematic study of the Lyapunov spectra [3], the study of thermalization
processes [4], and the relation between Lyapunov exponents and observable quantities like the
plasmon damping rate [5].

A particular problem which is still open is the dependence of the largest Lyapunov exponent
λof the pure Yang–Mills lattice theory on the energy densityε—energy per plaquette, or energy
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+ Also at: INFN, sezione di Firenze, and INFM, unità di Firenze, Largo Enrico Fermi 2, I-50125 Firenze, Italy.
E-mail address:pettini@arcetri.astro.it

0305-4470/99/163055+13$19.50 © 1999 IOP Publishing Ltd 3055



3056 L Casetti et al

per degree of freedom—particularly at lowε [6, 7]. First, theε scaling ofλ seems different
according to the fact that the theory is Abelian—U(1)—or non-Abelian—SU(2) andSU(3);
in the latter case two different scalings have been measured, namelyλ ∝ ε1/4 [8] andλ ∝ ε [1],
while in the former case a rapid decrease ofλ at low ε was observed [1]. As we shall see
in the following, our results suggest that in theU(1) case the power lawλ ∝ ε2 holds. As
pointed out by M̈uller and Trayanov [9] and subsequently by Nielsenet al [7], such a problem
is interesting because it is closely related with the problem of the relevance of the chaotic
lattice dynamics for the continuum limit of the gauge theory. In fact, intrinsic dimensional
arguments can be used to show that the lattice spacinga, which can be set equal to one in all
the numerical simulations after a convenient choice of units, enters the relation betweenλ and
ε as follows:

aλ(a) = f (aε(a)) (1)

hence if one numerically observes a power lawλ ∝ εk, the latter can be read as

λ(a) ∝ ak−1ε(a). (2)

This means that considering a continuum limita→ 0 in whichε(a = 0) is finite, corresponding
to a finite temperature of the resulting field, then the Lyapunov exponent is finite in the limit
a → 0 only for the particular exponentk = 1. Larger exponentsk > 1 would imply that
lima→0 λ(a) = 0, thus leading to a regular continuum theory, while exponentsk < 1 would
mean that in the continuum theory the Lyapunov exponent diverges. The linear behaviour then
plays a very special role. As regards non-Abelian theories, in [6] some evidence is reported
supporting the fact that the correct scaling is the linear one,λ ∝ ε, the other one (λ ∝ ε1/4)
being a spurious result due to finite-time effects. According to these results the continuum
limit, for small, but finite, energy densities, of the Lyapunov exponent of non-Abelian lattice
gauge theories is finite. In fact, extracting reliable information from numerical simulations in
the low-energy regime is very difficult, mainly because of finite-time effects, which become
very important at small energy densities as the characteristic instability timescales grow, and of
finite-size effects which are known to be rather large in typical lattice gauge theory simulations.

In this paper we apply a recently proposed formalism [10–14], which is based on a
Riemannian geometrization of Hamiltonian dynamics, to the classical dynamics of lattice gauge
theories. Such a formalism allows one to relate chaotic dynamics and curvature properties of
suitable manifolds, and to obtain an analytic formula for the Lyapunov exponent in terms
of average curvature fluctuations [12, 13]. The quantities entering this formula are statistical
averages which can be computed regardless of the knowledge of the dynamics, either by Monte
Carlo or molecular dynamics simulations, or in some cases analytically [13]. As a first step, we
apply this formalism to the Abelian—U(1)—lattice gauge theory, which is the simplest one,
leaving the non-Abelian case to future work. In the case of aU(1) gauge theory we perform
a precise numerical measurement of the Lyapunov exponent by simultaneous integration of
the Hamilton’s equations and of the tangent dynamics equations using a precise symplectic
algorithm [15] for several lattice sizes. In these simulations we also measure the relevant
geometric observables that allow for a characterization of the dynamics and that enter the
above-mentioned theoretical expression for the Lyapunov exponent. We find that the analytic
estimate compares very well with the outcomes of the numerical simulations for the Lyapunov
exponents. Moreover, we find that the theoretical estimate is almost free from finite-size
effects; for small energies we already find the lawλ ∝ ε2 when inserting in the formula the
values of the geometric observables obtained with small (4×4×4) lattices, while the numerical
values of the Lyapunov exponents are affected by large finite-size effects.

This paper is organized as follows: in section 2 we review very briefly the geometric theory
of Hamiltonian chaotic dynamics; in section 3 we describe the model and the observables
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studied. Section 4 is devoted to the presentation and the discussion of the results, and in
section 5 we draw some conclusions and outline some future developments.

2. Geometry and chaotic dynamics

Let us now very briefly recall the main points about the geometric theory of Hamiltonian
chaos. Details can be found in [10–13]. Despite the fact that this theory is still in its infancy,
it has already proved useful, not only in its original context, but also in connection with the
problem of the relationship between dynamics and statistical mechanics (in particular phase
transitions) [16–18].

Hamiltonian dynamics can be rephrased in geometrical terms owing to the fact that the
trajectories of a dynamical system with quadratic kinetic energy can be seen as geodesics of a
suitable Riemannian manifold. There are several choices for the ambient manifold as well as
for the metric tensor. As already discussed in [11–13] a particularly useful ambient space is the
enlarged configuration space-timeM × R2, i.e. the configuration space{q1, . . . , qi, . . . , qN }
with two additional real coordinatesq0 andqN+1. In the followingq0 will be identified with
timet . For standard HamiltoniansH = T +V (q)whereT = 1

2aij q̇
i q̇j , this manifold, equipped

with Eisenhart’s metricgE , has a semi-Riemannian (Lorentzian) structure (detgE = −1). The
arc length is given by

ds2 = aij dqi dqj − 2V (q)(dq0)2 + 2dq0 dqN+1 (3)

where bothi and j run between 1 andN . Let us restrict to geodesics whose arc-length
parametrization is affine, i.e. ds2 = c2

1 dt2; simple algebra shows that the geodesic equations

d2qµ

ds2
+ 0µνλ

dqν

ds

dqλ

ds
= 0 µ, ν, λ = 0, . . . , N + 1 (4)

become Newton equations (without loss of generalityaij = δij is considered)

d2qi

dt2
= −∂V

∂qi
(5)

for i = 1, . . . , N , together with two extra equations forq0 andqN+1 which can be integrated
to yield

q0 = t (6a)

qN+1 = c1

2
t + c2 −

∫ t

0
L(q, q̇) dt (6b)

whereL(q, q̇) is the Lagrangian, andc1, c2 are real constants. In the following we setc1 = 1
in order that ds2 = dt2 on the physical geodesics. As stated by Eisenhart theorem [19],
the dynamical trajectories in configuration space are projections onM of the geodesics of
(M × R2, gE).

In the geometrical framework, the stability of the trajectories is mapped on the stability
of the geodesics, hence it can be studied by the Jacobi equation for geodesic deviation

D2J

ds2
+R(γ̇ , J )γ̇ = 0 (7)

whereR is the Riemann curvature tensor, ˙γ is the velocity vector along the reference geodesic
γ (s), D/ds is the covariant derivative andJ , which measures the deviation between nearby
geodesics, is referred to as the Jacobi field. The stability—or instability—of the dynamics,
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and thus deterministic chaos, originates from the curvature properties of the ambient manifold.
In local coordinates, equation (7) is written as

D2Jµ

ds2
+Rµνρσ

dqν

ds
J ρ

dqσ

ds
= 0 (8)

and in the case of Eisenhart metric it simplifies to

d2J i

dt2
+

∂2V

∂qi∂qj
J j = 0 (9)

which is simply the usual tangent dynamics equation for standard Hamiltonians. The Lyapunov
exponents are usually computed evaluating the rate of exponential growth ofJ by means of a
numerical integration of equation (9) [20].

In the particular case ofconstant curvaturemanifolds, equation (7) becomes very simple
[21]

D2Jµ

ds2
+KJµ = 0 (10)

and has bounded oscillating solutionsJ ≈ cos(
√
Ks) or exponentially unstable solutions

J ≈ exp(
√−Ks) according to the sign of the constant sectional curvatureK, which is given

by

K = KR

N − 1
= R
N(N − 1)

(11)

whereKR = Rµνq̇µq̇ν is the Ricci curvature andR = Rµµ is the scalar curvature;Rµν is the
Ricci tensor. Manifolds withK < 0 are considered in abstract ergodic theory (see e.g. [22]).
Krylov [23] originally proposed that the presence of some negative curvature could actually
be the mechanism at work responsible for chaos in physical systems, but in realistic cases the
curvatures are neither found to be constant nor everywhere negative, and the straightforward
approach based on equation (10) does not apply. This is the main reason why, with few
exceptions, Krylov’s ideas have remained confined to abstract ergodic theory.

In spite of these major problems, some approximations on equation (7) are possible even
in the general case. The key point is that negative curvatures are not strictly necessary to
make chaos, and that a subtler mechanism related to thebumpinessof the ambient manifold is
actually at work. Upon an assumption of quasi-isotropy of the ambient manifold, i.e., that the
manifold can be obtained as a small deformation of a constant-curvature space (see [13] for
details), equation (7) can be approximated by an effective scalar equation which reads

d2ψ

dt2
+K(t)ψ = 0 (12)

whereψ is a generic component of the vectorJ (in this approximation all the components are
considered equivalent), andK(t) is a stochastic process which models the curvature along the
geodesic curve. Such a stochastic model is defined by

K(t) = 〈kR〉 + 〈δ2kR〉1/2η(t) (13)

wherekR = KR/N , 〈·〉 stands for an average taken along a geodesic, which, for systems
in thermal equilibrium, can be substituted with a statistical average taken with respect to a
suitable probability measure (e.g. the micro-canonical or the canonical measure);η(t) is a
stationaryδ-correlated Gaussian stochastic process with zero mean and variance equal to one.
Using Eisenhart metric, and for standard Hamiltonians, the non-vanishing components of the
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Riemann tensor areR0i0j = ∂qi ∂qj V , hence the Ricci curvature has the remarkably simple
form

kR = 1

N
∇2V (14)

where∇2 is the Euclidean Laplacian operator. Equation (12) becomes a stochastic differential
equation, i.e. the evolution equation of a random oscillator [24]. It is worth noting that
equation (12) is no longer dependent on the dynamics, since the random process depends only
on statistical averages. The estimate of the Lyapunov exponentλ is then obtained through the
evolution of the second moments of the solution of (12) as

λ = lim
t→∞

1

2t
log

ψ2(t) + ψ̇2(t)

ψ2(0) + ψ̇2(0)
. (15)

As shown in [12,13], this yields the following expression forλ:

λ(k, σk, τ ) = 1

2

(
3− 4k

33

)
(16)

where

3 =
(
σ 2
k τ +

√
64k3

27
+ σ 4

k τ
2

)1/3

(17a)

τ = π
√
k

2
√
k(k + σk) + πσk

(17b)

in the above expressionsk is the average Ricci curvaturek = 〈kR〉 andσk stands for the
mean-square fluctuation of the Ricci curvature,σk = 〈δ2kR〉1/2.

The advantages in using the geometric approach to Hamiltonian chaos are thus evident.
In fact, it is possible to give reliable estimates of the Lyapunov exponent without actually
computing the time evolution of the system: the estimate (16) ofλ depends only on statistical
averages which can either be computed analytically in some cases (for instance in the case of
the FPU model [12]) or, in general, extracted from a Monte Carlo or a dynamical simulation,
as is the case of the model studied in this paper.

The behaviour of the average geometric observables as the control parameter (e.g. the
energy density or the temperature) is varied conveys information which goes beyond the
possibility of computing the Lyapunov exponent. In fact, one can look at the random oscillator
equation (12) as an effective Jacobi equation for a geodesic flow on a surfaceM whose Gaussian
curvature is given by the random processK(t). As long as nonlinear coupled oscillators are
considered, the average Ricci curvature is positive, henceM can be regarded as a sphere with
a fluctuating radius. In the limit of vanishing fluctuations, one recovers the bounded evolution
of the Jacobi field associated with integrable dynamics. Chaos suddenly appears as curvature
fluctuations are turned on, nevertheless it it will be ‘weak’ as long asσk � k, i.e. as long
asM can be considered as a weakly perturbed sphere. In contrast, as the size of curvature
fluctuations becomes of the same order of the average curvature,σk ' k, M can no longer
resemble a sphere, and the dynamics will no longer ‘feel’ the integrable limit. Hence we expect
the dynamics to be strongly chaotic. This is by no means a deep explanation of the existence
of weakly and strongly chaotic regimes in Hamiltonian dynamics. Nevertheless, it shows
how the simple geometric concepts which enter the Riemannian description of Hamiltonian
chaos, besides providing effective computational tools, are also useful in helping one’s physical
intuition with images and analogies which would be difficult to find elsewhere.
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3. Model and dynamical observables

The dynamical system that we are now considering is the classical lattice gauge theory based
on the Abelian gauge groupU(1). The Hamiltonian of such a system can be derived in two
ways, either as the dual (Wegner model) of a lattice planar spin system [25], or starting from
the Kogut–Susskind Hamiltonian for a generic gauge groupG [25, 26] and then specializing
to the groupU(1). In the latter case we obtain the same Hamiltonian as in the former case by
choosing theSO(2) real matrix representation of the groupU(1).

The lattice Lagrangian, obtained from the Wilson action by fixing the temporal gauge (all
the temporal components of the gauge fields are set to zero) and then by taking the continuum
limit in the temporal direction, is

L = ag2

2

∑
links

〈U̇x,µ, U̇x,µ〉 − 1

ag2

∑
plaquettes

(
1− 1

2
TrUµν

)
(18)

whereUx,µ ∈ G is a group element defined on a link of ad-dimensional cubic lattice, labelled
by the site indexx and the oriented lattice directionµ, g2 is a coupling constant,a is the lattice
spacing,〈·, ·〉 stands for the scalar product between group elements, defined as

〈A,B〉 = 1
2 Tr(AB†) (19)

andUµν is a shorthand notation for the plaquette operator,

Uµν = Ux,µUx+µ,νUx+µ+ν,−µUx+ν,−ν . (20)

We can pass to a standard Hamiltonian formulation by putting

P = ∂L
∂U̇
= ag2U̇ (21)

thus obtaining

ag2H = 1
2

∑
links

〈Px,µ, Px,µ〉 +
∑

plaquettes

(1− 1
2 TrUµν). (22)

The parametersa andg2 can be scaled out, so we setg = a = 1.
The Hamiltonian (22) is the classical Hamiltonian for a lattice gauge theory with a generic

gauge groupG. Let us now specialize to the Abelian groupG = U(1). Choosing the
representation

U =
(

cosϕ sinϕ
− sinϕ cosϕ

)
(23)

we have

P = U̇ = ϕ̇
( − sinϕ cosϕ
− cosϕ − sinϕ

)
(24)

and we find
1
2〈P, P 〉 = 1

2ϕ̇
2. (25)

To write the plaquette operator, we use the fact that the groupU(1) ' SO(2) is Abelian.
Then the product of the four rotations is a rotation of the sum of the oriented angles along the
plaquette (the discrete curl of the fieldϕ)

ϕx,µν = ϕx,µ + ϕx+µ,ν − ϕx+ν,µ − ϕx,ν (26)

and the magnetic energy, i.e., the potential energy of the dynamical system can be written as

V =
∑

plaquettes

(1− 1
2 TrUµν) =

∑
plaquettes

(1− cosϕx,µν). (27)
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Our canonical variables are then the anglesϕx,µ and the angular momentaπx,µ = ϕ̇x,µ, and
the Hamiltonian (22) becomes

H = 1
2

∑
links

π2
x,µ +

∑
plaquettes

(1− cosϕx,µν). (28)

Constant-energy (microcanonical) simulations have been performed on three-dimensional
lattices—with lattice sizes ranging from 43 to 153—by integrating the canonical equations
of motion:

ϕ̇x,µ = πx,µ (29a)

π̇x,µ = − ∂V

∂ϕx,µ
(29b)

wherex runs over theL3 lattice sites andµ = 1, 2, 3, by using a precise third-order bilateral
symplectic algorithm [15]. We remind that symplectic algorithms are integration schemes
which exactly preserve the canonical form of the equations of motion. The exact Hamilton
equations are replaced, in the time discretization procedure, by a map that is symplectic, hence
the discrete-time flow that approximates the true Hamiltonian flow generated by Hamilton’s
equations is still Hamiltonian. All the geometric constraints on the phase space trajectories
which are enforced by the canonical form of the equations of motion are thus exactly preserved
during the numerical integration procedure and the Hamiltonian flow is faithfully represented.
As a by-product of these features, symplectic algorithms conserve the total energy of the system
very well: in our simulations relative energy fluctuations were of the order of 10−7–10−8. In
equations (29)V is given by equation (27), whose explicit expression on a three-dimensional
lattice is

V =
∑
x

∑
(µν)

(1− cosϕx,µν) (30)

where(µν) = 12, 13, 23. The forces (rhs of equation (29b)) are given by

− ∂V

∂ϕx,µ
=
∑
δ=1,2

sinϕx−µ−δ,µµ+δ − sinϕx,µµ+δ. (31)

In order to compute the largest Lyapunov exponentλ by the standard method [20], the tangent
dynamics equations (9), which now read as

J̈x,µ +
∑
y

∑
ν

∂2V

∂ϕx,µ∂ϕy,ν
Jy,ν = 0 (32)

have been integrated simultaneously with Hamilton’s equations (29) by means of the same
algorithm. The largest Lyapunov exponent has then been computed according to the definition

λ = lim
t→∞

1

t
log

[|J̇ |2(t) + |J |2(t)]1/2

[|J̇ |2(0) + |J |2(0)]1/2
. (33)

Here|J |2 =∑x

∑
µ J

2
x,µ is the squared Euclidean norm of the tangent vectorJ .

According to the discussion of section 2, the relevant geometric observable which is able
to characterize the chaotic dynamics of the model is the Ricci curvaturekR, computed with
the Eisenhart metric, defined by equation (14), which can now be rewritten as

kR = 1

L3

∑
x

∑
µ

∑
ν 6=µ

[cosϕx,µν + cosϕx−ν,µν ]. (34)

The average and the rms fluctuations of the Ricci curvaturekR have been computed in all the
simulations. The results are presented and discussed in the next section.
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Figure 1. Plots of the averagek (full circles)
and of the rms fluctuationσk (open circles) of the
Ricci curvature versus the energy densityε, for
three different lattice sizes: from top to bottom,
L3 = 43, 83, 153. Errorbars are smaller than the
size of the data points.

4. Results and discussion

The average and the fluctuations of the Ricci curvature (34) are plotted in figure 1 against the
energy densityε for three different lattice sizes. The resulting patterns reveal that in the low-
energy regime the averagek is much larger than the fluctuationσk, whereas in the high-energy
regime the converse is true. These results are qualitatively the same as those that have recently
been obtained for a planar (XY ) spin model on a 2− d cubic lattice [16]. Such a fact is not
surprising, since the present model, possessing a local gauge invariance under proper planar
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rotations, is expected to behave on ad-dimensional lattice—from a statistical–mechanical
point of view—as its dual model (invariant under a global symmetry) on a (d−1)-dimensional
lattice [25]. Moreover, this means that our results are consistent with the fact that the system
undergoes a Berežinskij–Kosterlitz–Thouless (BKT) transition at a finite-energy density (of
orderε ' 1 in our units). However, the analysis of the geometric quantities is not expected
to give sharp indications of the presence of a transition in the case of a BKT transition. In
contrast, in the case of second-order transitions the fluctuations of the Ricci curvature exhibit
peculiar cusp-like behaviours [16,17] which are completely absent here.

Figure 2. Numerically computed largest
Lyapunov exponentλ versus the energy density
ε for three different lattice sizes: from top to
bottom,L3 = 43, 83, 153. Errorbars are smaller
than the size of the data points.
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Figure 3. The largest Lyapunov exponent
versus the energy densityε for three different
lattice sizes: from top to bottom,L3 =
43, 83, 153, in a log–log scale. The full
circles are the numerically measured values,
and the open circles are the theoretical
estimates obtained by inserting the average and
fluctuations of the Ricci curvature, reported in
figure 1, in equation (16). The low-energy
behaviour λ ∝ ε2 is highly evident from
the theoretical estimates already made for a
43 lattice, where the scaling withε of the
numerically computed Lyapunov exponents is
completely different.

From the arguments reported at the end of section 2 we expect a crossover from weak to
strong chaos whereσk ' k. The results reported in figure 1 thus suggest that such a crossover
should occur aroundε ' 1, perhaps at a somewhat higher value ofε in the case of a 153

lattice. Actually, as it is shown in figure 2, in the energy region aroundε ' 1 the numerically
computed values of the largest Lyapunov exponent grow rapidly. At larger energies the values
of λ decrease because asε → ∞ the model becomes integrable. At variance with what is
usually found in other models (where theλ(ε) pattern is rather stable when the number of
degrees of freedom of the system is varied) sizeable variations in theλ(ε) pattern are observed
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Figure 4. Numerical results for the Lyapunov exponent atε = 10−2 (full circles) compared with
the theoretical estimate obtained by equation (16) (open circles) versus lattice size.

here at different lattice sizes. Again, the phenomenology is very close to the one observed in
theXY model on a 2− d lattice. The fact that there is a change in the chaotic properties of the
dynamics is extremely evident looking at figure 3, where the Lyapunov exponents are plotted
againstε in a log–log scale. In fact, in an energy range aroundε ' 1, the behaviour ofλ as a
function of the energy density deviates from a steep power law to a smoother one. In figure 3
the numerical values ofλ are compared with the theoretical estimates obtained according to
the geometric theory outlined in section 2, i.e., obtained by substituting the computed values
of k andσk, shown in figure 1, into equation (16).

Two facts are immediately evident from figure 3. First, in the low-energy region (weak
chaos) the theoretical estimates show a power-law behaviourλ ∝ ε2 already using the
geometric values computed using a very small (43) lattice, and the exponent of the power
law remains the same for all the lattice sizes, whereas the numerical values ofλ show a less
steepε-dependence for small lattices. Second, both the low-energy power law behaviour and
the actual values of the numerical Lyapunov exponents are closer to the theoretical estimates the
larger the lattice size is. Let us mention that the actual value ofλ is theoretically underestimated
in the transition region, as is very evident from figure 3. Without entering the details of this
mismatch, we mention that the reason can be understood in the light of a very similar situation
found in 1− d, 2− d and 3− d XY models [13,16,17].

Moreover, the actual values of the theoretical estimates are almost free from finite-size
effects, which are instead, very large in the numerical values of the Lyapunov exponents.
This fact is particularly evident at very low energy densities, as shown in figure 4, where the
numerical and theoretical values ofλ are plotted against the lattice size.

5. Concluding remarks

The results presented in the previous section show clearly that the geometric approach to
Hamiltonian chaotic dynamics outlined in section 2 is particularly efficient to provide very
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good estimates of the largest Lyapunov exponent for a classical lattice gauge theory with
Abelian gauge symmetry. In particular, the theoretical estimates of the Lyapunov exponents
are almost free from finite-size effects, especially at low energies. The theoretical values are
very close to the numerical values that one extrapolates for very large lattice sizes even when
the geometric quantities are computed using very small lattices. Also, the dependence ofλ on
the energy density in the weakly chaotic (low-energy) region is alreadyλ ∝ ε2 for a 43 lattice,
where the numerical values ofλ exhibit a much less steep scaling.

This is confirmation of the fact that the geometric estimates of the Lyapunov exponents
obtained by equation (16) are very good for large systems, as already observed in other
cases [13]. It is not surprising since the whole theory uses the large size of the systems as a
hypothesis [13, 27]. Moreover, this feature is very promising in the perspective of applying
the geometric theory to non-Abelian lattice gauge theories. In fact, as already mentioned in
the introduction, in the non-Abelian case there is still some doubt about the correct value of
the exponentα of the power lawλ ∝ εα in the low-energy region, and this has remarkable
importance for the relevance of chaos in the continuum limit of the theory. The application
of the geometric theory of chaos might help in obtaining reliable estimates of the exponentα

already using small lattice sizes.
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